Select Page
Ski pole

Ski pole

Manon, hope for the 2030 Olympics ?

Our previous design of the ski pole aimed at Pierre-Luc, based on the principle of ball joint that enclosed his palm, does not seem appropriate to us in Manon’s case, because her clamp function can be performed by his thumb and his pinky. Of course the strength of this clamp is clearly not sufficient to hold a ski pole, so we keep the principle of using a socket build around her hand.

We therefore define new specifications intending the left hand palm to have the same feelings of touch as her right hand.

Scan of the left hand, equipped with a muffle

Pour ce nouveau projet, nous essayons de nous passer de l’étape moulage, en réalisant un scan de la main in-situ, en position de maintien du bâton de ski. La main étant équipée d’une moufle qui sera ensuite bien adaptée par la couturière de la famille.

For this new project, we are trying to work without the molding stage, by performing an in-situ live hand scan, right in the position of holding the ski pole. The hand being equipped with a muffle which will then be well adapted by her family’s seamstress (grand’ma).

The scanning operation is not as easy as expected, but after 3 attempts we got a good quality mesh file.


Another evolution of our process, we will not transform the resulting mesh (STL format) into a B-rep file for importing into our usual CAD software (Onshape).

Once the STL is imported into an ONshape’s “part studio”, an enveloping surface is made around the mesh, made of multiple ‘Spline’ curves (generalization of Bezier curves) drawn over successive cut planes. These curves, building a group of sections, each of them wrapping the glove, are then connected (joined) to each other by ‘lofts’. A loft is a surface obtained by interpolation between the different curves, in the form of a NURBS surface (cf wikipedia).


A pile of parallel planes will slice the fist holding the pole. All plans are referenced on remarkable points of the muffle.
On each plane, a closed curve is drawn to surround all boundaries of the displayed STL, thus creating a section. By interconnecting the successive parallel sections by lofts (3D loft function), we obtain the blue envelope (as a surface) which will then be transformed into volume using the “thicken” function.
After having created thickness to the developed surface, having cut the end of the socket to allow the thumb to come out of it, the socket is ready for integration into the new holding system.

Highlights of the device including a (simple) system.

The new device is therefore no longer based on the ball joint principle but on a two-element system :

  • an element on the stick (host)
  • a detachable socket for Manon’s hand.

The cohesion of the two elements is achieved by neodymium magnets, powerful enough for the stick to follow each hand’s movements, but detachable enough to allow the release of the socket in case of fall.

The host frame is attached to the stick. The vertical side of the host is on the outside to allow ejection of the interlocking (inwards) in case of any fall. On the inner side of the host, we can see the location where the small circular neodymium magnet aimed at vertical support will be screwed, and the rectangular magnet, more powerful, dedicated to lateral support.
L’emboitement est “collé” sur le bâti grâce aux forces d’attraction des deux aimants.
The hand-socket is “glued” to the host-frame thanks to the forces of attraction of the two magnets.
  1. The correct positioning of the interlocking is ensured by a centering dome, and a calibrated location
  2. The holding of the interlocking on the frame is the attractive forces of the main rectangular magnet (40x40x4)
  3. The second magnet (circular) facilitates vertical support and centering of the hand-socket.
-The first prototype validated the functionality of holding the ski pole and its test on a ski slope confirmed our technical choices.

Some small improvements were made to give more room for the thumb and the final version of the interlocking was printed using semi-flexible material (BASF Fusion, with shore mark 65D).

The success of this new concept quickly attracted other parents. So we reviewed (cleaning) the design scripts, so any new requests would be made quickly. The frame (HOST on the drawing) is almost generic, its adaptation to the hand-socket is minimal. On the other hand, the hand-socket being 100% adapted to the size/aspect of the hand and the type of agenesis of the child, its design will be a little more touchy.

Ces adaptations de système à la main d’un autre enfant nécessitent de maitriser l’outil de conception CAO, mais n’est pas aussi compliqué qu’il y paraît. Les fichiers STL du système développé pour Manon ne seraient d’aucune utilité pour un autre enfant. Par contre, nos développements sont open-sources et disponibles sur la plate-forme Onshape, et nous sommes toujours prêts à donner un coup de main 🙂 [© E-nable France]

These system’s adaptations for another child’s hand will require some skill using a CAD design tool, but are not as complicated as it seems. The STL files of the system developed for Manon would be of no use for another child. On the other hand, our designs are open-source and available on the Onshape platform, and we are always ready to give a helpful hand 🙂

Let’s keep in touch.



Multi Tool Holder with Ball Joint

Multi Tool Holder with Ball Joint

Pen/Pencil MTH Holder Evolution


During the delivery of our first MultiToolHlder [MTH] dedicated to writing, it came to us that our method for positioning the pen was not necessarily that desired by the wearer of the prosthesis.

Every person who writes has his own habits, so we have to design an MTH that will suit needs well without the need to design a new support.

We got inspired by GPS mounting system that we used to suck on our car windshields.

No sooner said than done, the specifications were simple to write:

  • to redesign the existing pen sleeve
  • to graft a ball joint on the sleeve
  • to redesign the socket whilst grafting a self-tightening screw to lock the ball joint.



According to our development process, our design is naturally open source, available through Onshape the online application at the following URL:

The folder can also be found with the Search (target) function targeting the Public domain, with the string: ” team : MultiToolHolder“.

Visitor can discover the assembly as we simulated it, to correctly place the different elements.


and the designs of the parts constituting the MTH are grouped in the PartStudio directory “PenHolder_rotule “.

As usual to modify the file, it will first be necessary to make a copy in your personal space, folder that you can then change to wish, including to adapt the MTH to your target nesting.


The Socket

This element is the heritage of a previous development that we described in our post:

At the end of this socket must be created and “solder” a thread that will tighten the ball.


Design of the thread

The aim is to realize a cylinder, whose periphery will be dug (extrusion with removal of matter – extrude remove)a triangular profile corresponding to the thread, sweept along a helical path, image of the screw.


Le profil en triangle (jaune) dont le plan de construction est normal au chemin hélicoïdal, va définir un volume qui sera retiré de l’enveloppe cylindrique de la vis.

Step #2

Extrusion du cylindre complet de la vis, puis extrusion (remove) du profil du pas de vis suivant le chemin hélicoïdal.

Etape #3

On creuse l’intérieur de la vis pour y insérer la rotule, puis on “conifie” le début de la vis pour permettre un effet de serrage (l’écrou aura une conification inverse).

Etape #4

On fragilise la vis avec 8 fentes pour créer des lamelles un peu souples qui emprisonneront la rotule lors du serrage.

Etape #5

Enfin, on assouplit la base de chaque lamelle pour faciliter la flexion et le serrage autour de la bille.

3D Prints

Socket printing

The socket is a complex shape, to ensure the printings with high quality, printing will be done vertically, the socket laying on the flat section of the screw using supports to maintain a smooth appearance of the socket.

To ensure that the thread is properly stick on the printing mirror, a trick is used which consists in the existence of a small extruded flat part (thickness = 2 layers) in the same plan as the end plane of the thread. This piece (trick) is exported to the slicer at the same time as the socket, so it is she who imposes the collage of the whole on the plate.

Printing of the socket

Toute la complexité de l’impression réside dans l’impression de la rotule qui est orthogonale avec l’axe du manchon.

Dans une première version, le manchon avait été imprimé en appuyant la section coupée de la rotule sur le plateau. Lors d’un essai avec un bénéficiaire, la section du raccord entre la rotule et le manchon s’est cassé suite à un essai de rotation du manchon sans dé-serrer l’écrou. Essai concluant de résistance des matériaux et de la capacité de serrage de l’écrou!.

Nous avons donc orienté l’ensemble pour que la rotule, le raccord et le manchon soient imprimés dans le même plan.

Simplify3D, génère des supports de qualité qui se décollent sans laisser de traces. L’expérience montre qu’une épaisseur de couche de 20/100ème génère une rotule suffisamment précise pour l’utilisation.

Printing of the screw

Quelques essais d’écrous en PLA ont mis en évidence la présence de frottements (PLA sur PLA) importants lors du dé-serrage ce qui rend l’utilisation moins aisée pour une personne n’ayant qu’une main valide.

Un essai avec du filament Iglidur, (fabriqué par Igus) réputé pour ses qualités de frottements réduits, confirme le choix. L’écrou sera donc en Iglidur (, c’est cher mais on peut en demander quelques mètres en échantillon.

Par contre, l’impression n’est pas triviale, une température élevée pour la buse (260 à 265°C) avec un plateau à 70°C, et une vitesse d’impression faible (20 mm/s) comme pour du flex.

Printing of the inserts

Les stylos, crayons, pinceaux … ayant tous des diamètres différents, il faut donc imprimer un jeu de bouchons de diamètres différents, avec du filament flexible. Nous utilisons deux filaments : ninjaFlex et SmarFlex.

A partir d’un design paramétrable (paramètre  Pen_diameter dans le Part Studio ‘manchon_a_rotule‘), on exporte autant de bouchons que l’on veut pour constituer le jeu. Pour cette livraison, les diamètres choisis sont 9,5 mm, 8,5 mm, 8mm et 7 mm (crayon de papier courant).

et pour terminer, une coupe générale du MTH à rotule assemblé;

… and finally the Multi Tool Holder on stage.

Nathalie ré-apprend à se servir de sa main droite pour écrire, pour dessiner. Les réflexes vont revenir rapidement.


Afin que Nathalie puisse tenir des outils de plus petits diamètres, Patrick imprime et lui envoie quelques manchons encore plus petits que les précédents.

Et peu de temps après, nous recevons des nouvelles… et des photos : Nathalie s’est mise à peindre, cela faisait tellement longtemps qu’elle en rêvait ! Et on doit dire qu’elle se débrouille plutôt très bien …  

Nathalie peint

…  et immédiatement après la livraison, conception d’une nouvelle extension articulée !!


Le porte fourchette

Maintenant que la base est construite, il devient aisé de concevoir d’autres extensions articulées et spécialisées.

En repartant du concept de porte fourchette décrit dans un article précédent ( pour réutiliser et améliorer le bloc “coinceur” de fourchette, imprimé en flexible. La réalisation de cette extension a été très rapide.

On retrouve les primitives de conception dans le Part Studio ‘fourchette_a_rotule‘ du même dossier team

A l’attention de tous les membres d’e-Nable France (Makers ou Demandeurs d’appareil)

Nos développements sont en open source, disponibles à tous pour être reproduits. L’adaptation de l’emboitement demande un peu plus de technicité qu’une simple compétence en impression. Mais, nous sommes là pour vous aider à acquérir cette compétence.

Soumettez-nous vos besoins et nous vous aiderons à réaliser votre MTH personnalisé. La seule petite contrainte, est que le design est trop complexe pour être réalisé avec le logiciel Openscad (surtout du fait de la forme non modélisable par simples primitives de l’emboitement).

Heureusement il existe une solution gratuite pour résoudre nos besoins, celle que nous maitrisons : l’application en ligne Son usage n’est pas plus compliqué qu’appréhender Openscad. Prenez quelques minutes pour lire notre article ‘’


A knife holder for a child

A knife holder for a child

The context 

Lina is a 5 years old girl when we meet her for the first time. She was born with a malformed right hand equipped with two fingers. One of these is weak. She cannot flex both of her fingers, but only move them laterally as a kind of needle nose pliers. And she is very comfortable for most of everyday life activities… except for some actions that she cannot perform. And an example is holding a knife. Her parents are used to help her cutting meet, and she is used to push rice to the fork (which is handled by her left hand) with her two fingers.  

But now she has to have lunch at school, or sometimes diner in  a restaurant, and she probably feels not so comfortable in front of other children.  Thus Eric her father asks e-Nable community if someone can help in developing a kind holder for Lina.

Modeling of a fitting socket

After a first meeting with Lina and Eric, we consider that a standard e-Nable hand cannot fit the need of Lina, and we decide to develop a very dedicated knife holder.  It will be made of a socket in which Lina can insert her right hand, and some specific shapes where she can fix different kinds of knives.

Hand casting 

The first operation is to get a model of Lina’s hand. This is done by casting her hand in pink Alginate to get a positive plaster copy.  

Shape modification

Unfortunately she bent her wrist during casting operation. After the 3D scanning and reverse engineering process that leads to a clean digital model, the next operation to get a proper model usable to make a comfortable socket is then to unbend the CAD model. This is performed thanks to a specific “flexion” function available in SolidWorks. This allows to put the hand inline with the forearm, and also to put the two fingers closer to each other.

Design of the socket

The next step is to design the socket. We come back in our collaborative CAD software, Onshape, to draw a few sections and build a “loft” that approximately fits Lina’s hand. Then two offset operations of surfaces lead to the inner and outer shapes of the socket, with 3mm gap dedicated to put a comfortable 3D fabric that can absorb moisture and can be easily removed for washing. 

Designing the knife holder

The input information for designing a knife holder it to have an idea of the types of knives that will be used with this device. Eric, Lina’ farther, provided two CAD models (he drawn by himself) of knives available at home: the “knife to push” and the “knife to cut”.


Then we started with the idea of fixing the knife handle in a flexible interchangeable part that should fit both types of knives, and to add a simple slot to center the blade. In the first prototype the blade has been tied with adaptive strap made of Velcro type band (ID-Scratch).

After validation of the orientation and position of the knife by Lina, for the second version the strap was replaced by a simple neodymium magnet. You will find below a photo of the first version in test (pushing knife), and several CAD views of the last version.

And then…

Lina is happy, she can eat without asking for help to her classmates;

Eric is happy, Lina eats now without pushing noodles with fingers.

Eric asked for advice because (and that’s also good news!)

  • he is in the process to learn how to design with Onshape. He already made a new insert (the blue part on screen shots above) that will fit another knife handle.
  • And he is in the process of buying a 3D printer and we hope him to become a new maker within e-Nable France community 🙂


The CAD models are available for inspiration, adaptation to other cases, and hopefully for improvements under, if you have an account (free for non profit activities and public models), you just have to search for “Team Gre-Nable : knife_holder” among the public models. 

Please just let us know if you design an adaptation of this!


Orthosis for a Cook

Orthosis for a Cook

Yann’s Life Status :

Yann is an adult suffering from a pathology of the nerves (an NMMBC [1] for topic’s specialist) which in particular renders ineffective the control of a muscle of his left thumb, the one which brings the thumb into the position of opposition towards the other fingers (aptly named “opposing thumb muscle”, see image below). The muscle atrophies. Yann can therefore no longer have a normal grip with his left hand, which is inconvenient for a cook (to hold a bread, a sausage, an onion … while his right hand cuts slices for example).

[image en provenance du site Doctissimo]

A need for an orthosis

He would therefore need a mechanical assistance to place his thumb in opposition, but he also needs to be able to move back his thumb when needed in the plane of the palm for other manipulations (like cutting thin slices of salmon for example).

Occupational therapists in the hand surgery department at Grenoble University Hospital can build a rigid orthosis that will keep Yann’s thumb in opposition, but this will prevent him from raising it to put his hand flat back on the working table. The orthosis to be designed must also be compatible with the hygienic constraints associated with the cooking profession, and to be as compact or invasive as possible to minimize the inconvenience of wearing over a long period. So his occupational therapist advised him to contact our team (“makers” of e-Nable France) to envision if 3D printing technology could produce an adapted orthosis to his situation.


The project was first entrusted to a group of engineering students from Grenoble-INP Génie Industriel [2]. After a very detailed study of the needs, and the usage of a 3D scanner to model Yann’s hand, they carried out a benchmark which confirmed that most of the existing orthosis for hands are made from thermo plastic mesh which remains rigid after shaping. Unfortunately this would prevent Yann from bringing his thumb back into the plane of the palm. But the scanned model made it possible to print an exact copy of Yann’s hand to quickly test the placement of various orthosis prototypes. However, this does not make it possible to judge the effectiveness of maintaining the thumb in the desired position. Recurrent interviews with Yann were necessary to fully understand the solution. All this work resulted in a printed orthosis made from a flexible material (TPU) which wraps around the hand, hooks to the base of the index-middle fingers, and maintains the thumb in an opposable position, without preventing the return of the thumb to the flat hand position. The result of this study is promising, but keeping the thumb in opposition still seems insufficient to Yann, the orthosis is a little too bulky to be used over a long period by Yann as part of his job.


Design Steps

For this development we followed an iterative user-centered design process, which steps are defined below.

Step 1 :

During a meeting with Yann, the observation of the previous prototype on his hand, and gathering his feelings and expectations as the final user, we generally come out with a drawing on a paper, which provides the raw aspect of the future orthosis, highlighting the evolution compared to the previous version. See two examples of such sketches on the pictures opposite.

Step 2 :

Uploading the hand drawing into the CAD system then allows sketching a digital model of the outlines of the orthosis (mainly by Spline curves).

Step 3 :

After adjustment of the sketch curved lines to achieve a ‘nice’ appearance, the base shape is obtained by extrusion with a thickness of 1.6mm to 2mm depending on the flexibility we expect.

Step 4 :

Parallel line cut allow keeping only the contour boundaries (3mm to 4mm width). The holes will later be replaced by honeycomb structure.



Step 5 :

Design of a matrix with honeycomb shape. Various parameters are adapted to properly fill the orthosis. Not too much material and not too much holes.



Step 6 :

Extrusion of the honeycomb structure, removing of the outer extrusion to keep only inner elements, and finally merging with the boundaries.



Step 7 :

Designing, extruding (thickness of 3mm to 4mm) and merging the blocking “blade” that will push on the back of the thumb.

Note also the small link added on the left side of the blade, to help pushing the thumb.



How it works

The idea is that the honeycomb orthosis fits the hand of the patient, and the thicker tongue, that is more rigid, pushes the thumb towards the opposition configuration. So wearing this device maintains the thumb in this position. But simultaneously, the whole orthosis being printed with quite flexible material, the person can overcome the small force provided by the tongue to extend his thumb and get the hand flat when needed.

The way to wear it is presented on the series of pictures below.


About the material we use

For this kind of device we use either TPE (thermoplastic elastomer) which is a “flexible filament” or TPU (Thermoplastic Polyurethane) which is a “semi-flexible” filament.
The specific behavior of these materials is characterized by its hardness, expressed on a standard “Shore” scale. Be careful there are several scales. The ‘A’ scale is used for softer materials (like rubber band), and the ‘D’ scale for much harder ones (like solid truck tires).
The TPE filaments we use here feature between around 86 Shore A.
The other type, TPU, generally features a hardness of more than 95 Shore A, and up to 98, which is really more rigid.
So depending on what behaviour you want, you can change the material, but don’t forget the other main parameter you can adapt to get a more or less flexible part is the thickness (and infill percentage) of the printed part, and the thickness has a huge influence on the part’s flexibility or stiffness.



This first draft of project having given interesting results and allowing to consider still some improvements, team Gre-Nable ensure the follow-up, and two additional interviews with Yann made it possible to reach a usable orthosis with a slightly thicker support tab behind the thumb.

The orthosis is also smaller and therefore less invasive than the first versions, more flexible, it clings to the middle-ring fingers (which makes it possible to better pull the thumb in opposition). The Velcro straps are also reduced in width for less discomfort.

Yann seems satisfied with the help provided by this orthosis, while leaving him the freedom of bringing his hand flat when he wishes. The fact remains, however, that the crossing of the plastic filaments between the fingers is still troublesome.

Yann therefore returned visiting his occupational therapist who placed a protection consisting of a very thin adhesive tissue, which should avoid injuring the skin between his fingers.


Note that the following images are made on the hand of one of the designers, and the orthosis does not really fit, but this is mainly for demonstration purpose.

Picture 1 :

Here is the orthosis ready to be used, with two Velcro straps.

Picture 2 :

How to put the orthosis on the middle and ring finger, then on the thumb.

Picture 3 :

How the Velcro straps are fixed on the back side of the hand.

Picture 3 :

When the Velcro straps are tied, the configuration of the thumb is naturally opposed to other fingers…

Picture 4 :

… and allowing a heavy grasp on an object.

Picture 5 :

But the flexibility of the TPE material still allows the user to extend his thumb,

Picture 6 :

… and put the hand flat on the table.


“Regarding the orthosis, all improvements made the orthosis efficient and more comfortable, however, it’s still not sufficient to wear it for a long time (duration greater than 1 hour). I therefore only use it on well-defined tasks that I group together as much as possible, and efficiency is there ! […]

Thank you to the whole team, thank you for your actions which allow a few happy people to retrieve a part of their autonomy. “



“The orthosis developed by the Gre-Nable team:

  • it frees the mobility of the wrist compared to the first draft,
  • it allows passive opposition (by the splint) and the active feedback of the thumb in the plane of the hand,
  • no bulk in the palm – disinfection is possible by immersion,
  • not very bulky: fits within a vinyl glove

Yann retrieves a function without it being to the detriment of another.

This is where it is powerful !

Yann's occupational therapist

Grenoble hospital

To access the orthosis model we developed

For all our developments, we use a professional web-application with free access for makers named : Onshape .
If you want to use it, you only have to register. It is a very powerful and rather easy to learn Parametric CAD application developed by the former designers of SolidWorks.
All the projects developed using Onshape’s free license are public, therefore accessible to everyone for reading and copying in their environment.


Orthosis seen in Onshape

After logging into Onshape, just search for the word “Orthosis” to find all versions of this orthosis (among a few others), or “orthosis_Gre-Nable_Yann_V6” for the series of latest modifications shown in the images above.

Notes :

1) Multifocal Motor Neuropathy With Conduction Blocks causing motor deficit in part of the left hand.

2) Many thanks to the entire team of engineering students for their significant contribution to this project : Valeria Baghin, Adriana Camacho, Lucas Delaire, Dorian Gomez, Orianne Kassis, Bhargav Patel